272 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34, NO. 1, JANUARY 1996

Optimal Sampling Conditions for Estimating
Grassland Parameters via Reflectance
Model Inversions |

J. L. Privette, Ranga B. Myneni, W. J. Emery, Member, IEEE, and Forrest G. Hall

Abstract—The sensitivity of grassland bidirectional reflectance
to soil, vegetation, irradiance, and sensor parameters is assessed.
Based on these results, a vegetation Bidirectional Reflectance
Distribution Function (BRDF) model is inverted with ground
reflectance data from the First ISLSCP Field Experiment (FIFE).
Results suggest that leaf area index (LAI) is most accurately
retrieved from data gathered in near-infrared bands at low
‘solar zenith angles (SZA), and leaf angle distribution is best
retrieved from data gathered in near-infrared bands at high SZA.
Generally, leaf optical properties are more accurately estimated
from data acquired at high SZA. Canopy albedo and fraction of
-absorbed photosynthetically active radiation (fAPAR) are also es-
timated and compared to measured values. Albedo estimates are
accurate to about +0.01 (4% relative) when model parameters
are determined from reflectance data gathered under preferred
conditions. Estimates of fAPAR are less accurate. These results
provide a guide for efficiently sampling surface reflectance and
accurately retrieving parameters for use in climate and ecosystem
models. .

I. INTRODUCTION

PTICAL and structural properties of vegetation affect the

transfer of energy, mass, momentum, and trace gases at
the earth’s surface. Process models (climate, biogeochemistry,
ecosystem) therefore rely on accurate vegetation information
for useful results. For example, global fields of rainfall, tem-
perature and motion in General Circulation Models (GCM’s)
are affected by surface albedo [1]. Studies suggest this albedo
must be accurate to within £0.05 [2]. Similarly, photosyn-
thetically active radiation absorbed (APAR) by vegetation is
correlated with photosynthetic rates and plant growth in the
absence of limiting stresses [3]. Photosynthetic rates determine
the amount of carbon fixed by vegetation and hence affect the
carbon cycle and primary production.
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Satellite remote sensing techniques are often used to es-
timate surface parameters over large areas. Commonly, a
vegetation index (VI) is employed. Indices (e.g., Normalized
Difference Vegetation Index [NDVI]) have been correlated
with many variables including leaf area index (I.AI), biomass,
fraction of APAR (fAPAR), vegetation conductance, potential
evapotranspiration, and atmospheric carbon dioxide concentra-
tion. These relationships, however, can be site and samplitig
geometry ‘dependent [4]-[6]. Although some indices [4]; [7]
are less sensitive to distorting factors, Myneni et al. [8]
recently showed that most indices essentially detect pigment
abundance per unit area. Thus, further relationships are indirect
and subject to other influences.

A different technique for estimating surface parameters is
the inversion of bidirectional reflectance (BRDF) models [9].
Physically-based models permit the simulation of all media
affecting reflectance (soil, canopy, atmosphere) (e.g., [10]).
Thus, they are applicable to all sites and sampling conditions.
Their inversion allows the quantitative determination of pa-
rameters (e.g., LAI, leaf reflectance) that can be used directly
by some process models (e.g., [11]). Moreover, reflectance
models can be used to estimate surface state parameters such
as albedo, APAR, and photosynthetic efficiency over diurnal
cycles. ‘

Nevertheless, inversions of bidirectional reflectance models
with satellite data are not at an operational level: Thus,
some issues requiring further study may be better addressed
using simulated satellite data from ground-based instruments.
This study builds on a previous investigation [12] which
considered the preferred angular sample sets for determination
of surface properties via model inversion. Specifically, ground-
based reflectance data gathered over a tallgrass prairie during
the First ISLSCP Field Experiment (FIFE) were used to
estimate parameters of the soil and vegetation. The accuracy
of retrieved values was assessed as a function of solar angle
and spectral band. In addition, surface albedo and fAPAR are
estimated and compared to in sifu data.

II. MODEL VALIDATION AND SENSITIVITY STUDY

A. Model Introduction

DISORD is a numerical BRDF model based on the turbid
medium approximation ([13], [14]). It accounts for all known
scattering mechanisms and includes a hot spot formulation.
The model depends primarily on measurable physical prop-
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erties. Specifically, canopy depth is specified with the LAI
parameter. The leaf angle distribution (LAD) is prescribed with
the Beta distribution [15]. This distribution is a function of four
parameters (u(f), v(8), u(y), v(p)) which may be determined
analytically from leaf angle data. Diffuse leaf scattering is
bi-Lambertian; its magnitude depends on leaf reflectance (p)
and transmittance (7). Specular leaf reflectance depends on
the refractive index (7). The magnitude of the hot spot is
determined by a parameter denoted HSP. Although DISORD
can simulate reflectance from heterogeneous surfaces, a 1-D
approximation (i.e., horizontal homogeneity) was used here.

The upper and lower boundary conditions in DISORD may
both be anisotropic. Anisotropic soil reflectance is simulated
with the model of Jacquemoud er al. [16]. This model is a
function of six parameters, five of which may be considered
spectrally invariant. Anisotropic diffuse irradiance may also be
specified, although isotropic diffuse irradiance was assumed
in this study. The latter parameterization depends only on the
ratio () of direct-to-total irradiance.

The discrete ordinates method is used to solve the radiative
transport equation. In this method, photon travel is restricted
to a finite set of directions. These directions are chosen to
be the ordinates of a quadrature scheme such that the angular
integrals are evaluated accurately. All calculations in this study
utilized six ordinates per octant for a total of 48 directions in
the unit sphere. The spatial derivative is approximated by a
finite difference scheme, resulting in a system of algebraic
equations which can be solved by iteration on the scattering
integral. Further details may be found elsewhere [11].

B. Site Description
FIFE data were used throughout this study. FIFE included

the coordinated measurement of soil, vegetation and atmo-.

spheric properties from ground, aircraft and satellite-based
sensors [17]. The experiment was conducted on a 15 km x 15
km site near Manhattan, KS. Four Intensive Field Campaigns
(IFC’s; periods of more comprehensive measurements) were
conducted in 1987, and an additional campaign (IFC-5) was
conducted during July—August 1989. ‘

Site 916, an area of concentrated sampling during IFC-5,
was chosen for this study. This site was a relatively flat area of
tallgrass prairie. The vegetation mainly included C4 grasses.
The site was burmed in the spring of 1989 to remove dead
vegetation from previous years. Grazing did not occur. The
soil was of the Dwight Series.

C. Reflectance Data Description

Reflectance data from a Barnes Modular Multiband Ra-
diometer (MMR) were collected by a team from the Uni-
versity of Nebraska [18]. The MMR has seven bands in
the shortwave spectrum (0.45-0.52, 0.52-0.60, 0.63-0.69,
0.76-0.90, 1.15~1.30, 1.55-1.75, and 2.08-2.35 pm). It had
a 15° instantaneous field of view (IFOV) and was mounted
approximately 3.5 m off the ground. This resulted in a ground
IFOV of about 0.75 m? at nadir.

A circle of six 3 m x 3 m plots was defined at site 916. Five
of the plots were left intact and sampled for canopy reflectance.

0.0
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Reflectance
Fig. 1. Sampling geometry of the FIFE ground MMR instrument. The plane

of the paper represents the principal plane, and the radial lines represent view
zenith angles. The dark (light) shaded region depicts the band 4 NIR (band 3
red) reflectance as determined through forward modeling. Measured soil and
canopy parameters (Table IT) were used in the computation. The solar zenith
angle was 30° (sun represented with circle).

TABLE 1 .
NORMALIZED SPECIES ABUNDANCES USED TO DETERMINE CANOPY
PARAMETERS AT SITE 916. SPECIES WITH LESS THAN 2% ABUNDANCE
WERE DISREGARDED. ROWS WITHOUT DATA INDICATE SPECIES
FOR WHICH MEASURED PROPERTY DATA WERE NOT AVAILABLE

Leaf Optical

Species Site Means _ Properties  Leaf Angles
Little bluestem 0.240 0.331
Big bluestem 0.222 0.306 0.493
Indian grass - 0.157 0.216 0.349
Purple love grass 0.152
Blue gramma 0.051
Switchgrass 0.047 0.065 0.105
Lead plant 0.035 0.048
Inland ironweed 0.024 0.033 0.054

The MMR sampled the plots at seven view zenith angles
in the principal plane (Fig. 1). Typically, three samples were
collected at each angle. In this study, all samples at a given
angle were averaged. Only data gathered on August 4 and 8,
1989 (IFC-5), were used. Solar zenith angles (SZA’s) ranged
from 20 to 60° during the measurement periods. Rainfall did
not occur during this period, and canopy parameters were
assumed to remain constant.

The MMR boom and housing shadowed the target area
at some sun-target-sensor geometries. Thus, all data were
checked for shadow contamination based on trigonometric
analysis. Data. sets containing contaminated samples were
eliminated from further analysis. This resulted in 23 complete
data sets, each defined by seven samples per band at a given
plot and SZA.

D. Determination of Canopy Parameters

Measured canopy parameters were required throughout
this study. As only LAI was measured for the actual
mixed canopy, other parameters were estimated through an

abundance-weighted averaging of species data.
Species abundances were measured in 15 plots at site 916.

Species with less than 5% live green cover in a plot were not
recorded. In the present study, mean plot abundances were
summed and normalized. Species with normalized abundances
<2% were disregarded. The remaining eight species and their
abundances are given in Table I.
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TABLE 1T
MEANS AND STANDARD DEVIATIONS OF SPECTRALLY-VARIANT PARAMETERS AT
SITE 916 v EARLY AUGUST 1989. SPECTRALLY-INVARIANT PARAMETER VALUES
WERE {LAL 1(8), »(6)} = {1.94::0.61, 0.860-£0.06 3, 2.24440.368} FOR
VEGETATION AND {%, b, ¢, b, ¢’} = {1.098, 0.294, 0.093, 0.204, —0.030}
‘ FOR THE SOIL [19]. STANDARD DEVIATIONS OF LAI AND ws; WERE DETERMINED
FROM SITE 916 DATA; REMAINING VALUES WERE DETERMINED FROM
ALL AVAILABLE DATA. SINCE SOIL PARAMETERS WERE RETRIEVED
VIA INVERSION, STANDARD DEVIATIONS ARE NOT AVAILABLE

[ T g

Band N o N o N o
1 0.101 0.026 0.041 0.021 0.091 0.095
2 0.174 0.036 0.144 0.041 0.205 0.046
3 0.097 0.050 0.053 0.054 0.259 0.061
4 0.452 0.032 0.490 0.038 0.347 0.091
5 0.424 0.059 0.510 0.051 0.490 0.132
6 0.320 0.046 0.436 0.048 0.603 0.099
7 0.252 0.082 0.318 0.067 0.652 0.099

Of the eight species, leaf optical data were available for

six species and LAD data were available for four. Abundance

fractions were therefore summed and renormalized for both
parameters (Table I). These fractions were used to weight the
species data in the determination of canopy means. Species
data obtained closest in time to August 4-8, 1989 (or during
. the same period of plant life). were used. Only green leaf data
were used since dead leaf LAI <« green leaf LAI. The mean
zenith LAD, determined from leaf angle measurements, was
used to estimate the canopy Beta coefficients (u(6), v(8)). The
HSP parameter was estimated based on previous studies [14].
Mean parameter values are reported in Table II. The LAI
value is the mean value from five destructive samples. LAD
results suggest the canopy was predominately erectophile with
a mean tip angle of about 65°. Although azimuthal LAD data
were collected, a uniform distribution was assumed here,

E. Determination of Soil Parameters

Because a Lambertian soil approximation can cause sig-
nificant errors in top-of-canopy (TOC) reflectance [19], an
anisotropic backgrdund model [16] was used here. In a sepa-
rate study [19], this model was inverted using soil reflectance
data from site 916. The optimal set of retrieved parameter
values {ws,1-7, h, b,¢,b', '} is given in Table II. These pa-
rameters include seven spectral values of the particulate single
scattering albedo (w, 1-7), a roughness parameter (h), and
four coefficients of the Legendre phase function expansion
(b,¢, ¥, ). Excluding ws, the retrieved values were applicable
over all encountered solar angles, moisture levels and spectral
bands. Errors in principal plane reflectance were generally
less than 10%, although errors off the principal plane may
be greater. Since the parameters were determined from bare
soil data, their applicability to soils covered with canopy litter
is' not known.

F. Determination of Irradiance Parameters

The ratio (vy) of direct-to-total irradiance was not measured
in the MMR bands during FIFE. Therefore, the 5S atmospheric
model [20] was used. 5S was configured with water vapor,
ozone, and the aerosol optical depth data collected during IFC-
5. Values were updated for each MMR measurement period.
The thermodynamic profile was determined from the US62 at-
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Fig. 2. Comparison of measured and modeled TOC reflectance in principal
plane. Reflectances was determined for band 3 (red) at SZA = 60°. Measured
parameter values (Table ) were used. Squares ([I) represent TOC data and
pluses (+) represent soil data. SZA of measured data were within £4.5° of
60°.

mosphere, and a continental aerosol distribution was assumed:
The MMR band sensitivities were assumed constant over
the full wave half maximum (FWHM) wavelengths. Results
showed that «y increased with wavelength while its variance
decreased [19]. This suggests that spectrally-independent sur-
face parameters may be more accurately retrieved from- data
gathered at longer wavelengths. ‘

G. Model Validation

A partial validation of DISORD was accomplished by
comparing modeled and measured reflectance values. Mean
parameter values (Table IT): were used together with mean
atmospheric properties. Representative plots. of red (band 3)
and NIR (band 4) reflectance are shown in Figs. 2 and 3.
Both TOC and soil reflectance data are shown. Although the
model overestimated the red reflectance (errors <0.02 abso-
lute), the differences may be due to soil effects. Specifically,
the range of measured soil reflectance per angle is nearly
twice the magnitude of the canopy reflectance. This large
variability is probably due to moisture differences. A bright
soil may substantially increase TOC reflectance, especially in
canopies with many gaps. Since most turbid medium models
do not account for gaps, model estimates may be lower than
measured values. The NIR estimates (Fig. 3) are within' the
range of measured values for all view angles. Although the
soil reflectance variability is similar to the red case in absolute
units, it is lower relative to the canopy reflectance. Thus, its
impact is reduced.

This test suggests that the estimates of model parameters
were reasonable and that the model is able to simulate canopy
reflectance with acceptable accuracy. The latter condition is
imperative to the success of the inversion problem.

H. Sensitivity Study

Mathematically, the number of retrievable parameters-in an
inversion is limited only by the number of data points. In
practice, additional constraints are imposed due to inaccuracies
in the model (e.g., turbid medium assumption, absence of
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Fig. 3. Same as Fig. 2, but for band 4 (NIR) and SZA = 30°. The SZA of
measured data were within +2.5° of 30°.

nonleaf material), inefficiencies of optimization algorithms
(e.g., trapping at nonglobal minima) and limitations of the data
(e.g., noise, correlated samples). These drawbacks can lead
to an. overdetermination of the reflectance data and erroneous
inversion solutions. Thus, a sensitivity study was performed to
determine which parameters most affect canopy reflectance.
A “baseline” reflectance distribution was computed us-
ing the mean parameter set (Table II). The distribution was
sampled in seven directions according to the FIFE MMR
sampling scheme (see Fig. 1). Next, each model parameter
was perturbed in turn by 10% of its range, positively and
negatively. For each perturbation, a new reflectance distribu-
tion was computed. The rms difference between the baseline
and perturbed reflectance distributions was determined. The
sensitivity (S) to the parameter was then recorded, where

s =22 100, )

and

@

rms =

where r;’- is the baseline reflectance in direction j,r; is the
geometrically-analogous reflectance of the perturbed distribu-
tion, and F;’» is the mean of the seven baseline reflectance
values. This process was repeated for three SZA’s (30, 45,
and 60°) and two MMR bands (red and NIR). Although v was
determined from measured data (Section II-F), it was included
here to assess the impact of errors in its estimation.
Sensitivity values are given in Table III. For both bands,
results show TOC reflectance is most sensitive to leaf re-
flectance. This sensitivity increases notably with SZA in the
red. Since leaves strongly absorb red photons, a higher SZA
results in a much longer path optical depth. The increased
path dépth provides more opportunities for the canopy (versus
the relatively bright soil) to affect the photon distribution.
The distribution changes most in the backscatter region. At
NIR wavelengths, lower leaf absorption results in a smaller
change with increasing SZA. Sensitivity to leaf transmittance
is nearly the same as for leaf reflectance in the NIR, however
it is substantially less in the red. These results agree with

TABLE 11
SENSITIVITY (S, FROM (1)) oF TOC REFLECTANCE IN PRINCIPAL PLANE TO
PARAMETER PERTURBATIONS. PERTURBATIONS EQUALED 10% OF THE
THEORETICAL OR PRACTICAL RANGES. COLUMNS REPRESENT DIFFERENT SZA’S
(30, 45, AND 60°) AT TWo WAVELENGTHS (RED AND NIR). THIN
LINES SEPARATE ATMOSPHERIC, SOIL AND VEGETATION PARAMETERS,
RESPECTIVELY. - IS THE DIRECT-TO-TOTAL IRRADIANCE RATIO, A IS THE SOIL
ROUGHNESS PARAMETER, b, ¢, b; AND ¢’ ARE SOIL PHASE FUNCTION
PARAMETERS, wg IS THE SOIL SINGLE SCATTERING ALBEDO, HSP Is THE
CaNoOPY HOT SpOT PARAMETER, p AND T ARE LEAF REFLECTANCE AND
TRANSMITTANCE, AND p(6), (), t(¢), AND 1() ARE COEFFICIENTS OF
THE LAD. BASE CASE PARAMETER VALUES ARE GIVEN IN TABLE I

Red (Band 3). NIR !%and 4)
Parameter

v 695 .66 392 T80 2.36 302
3 0.46 0.41 027 036 031 0.25
b 8.68 6.08 2.50 341 2.49 1.59
c 792 5.56 2.20 177 1.08 039
b' 6.57 3.98 2.02 2.90 1.99 1.34
' 491 3.93 1.90 1.08 0.71 0.27
o 1486 10,66 5.15 6.42 519 382
HSP 373 3.08 117 1.00 111 042
o 6067  71.44 8234 2360 2415 2433
i 1902 2878 4657 1868  19.86  21.38
o) 4.62 4.09 5.26 10.10 1.74 7.18
v(8) 1.87 2.45 3.33 /381 2.57 2.32
(o) 075 0.93 2.66 2.14 2.41 2.87
V) 174 1.01 2.88 427 - 402, 433
LAI 2254 2211 13.08 2072 20.16 _ 18.09

[21]. The sensitivity to leaf transmittance at red increases
significantly with SZA. The sensitivity increases most sharply

~at high SZA’s due to changes in forward scattering. At NIR

wavelengths, however, leaf albedo is relatively high such that
there is significant multiple scattering. Thus, canopy forward
scattering and reflectance sensitivity do not change as much
with SZA. _

Relative to the sensitivities to the leaf optical properties, the
sensitivity to LAI is significantly lower at red than at NIR.
Due to high leaf absorption, the canopy behaves optically
semiinfinite -at a lower LAI for red photons. As conditions
become semiinfinite, reflectance becomes insensitive to per-
turbations in optical depth (LAI). Sensitivity to LAI decreases
with increasing SZA since this also leads to longer path optical
depths (more semiinfinite conditions). This result differs from
that in [9], where sensitivity to LAl increased with SZA. The
fourth most influential parameter at red is w,, the impact
of which decreases with increasing SZA. At NIR, u(6) is
fourth and w;, is fifth. The relative brightness of the soil with
respect to the canopy causes the differences in sensitivity order
between the bands. The sensitivity to the remaining parameters
is not significantly different for either band. '

For model inversions, one set of adjustable parame-
ters—influential over every band and solar angle combi-
nation—was desired. The model clearly is sensitive to the
set {p,7,LALw,} in both bands. Although the model is
rather sensitive to u(#) at NIR, -its sensitivity to u(6) at
red is less than its sensitivity to b,c,b’, and ¢ for low
SZA’s. Nevertheless, u(8) was kept variable and b,c, b,
and ¢’ were fixed. This decision followed from the sensitivity
study and [19]. The latter suggested that {h,b,c,b’,c'} are
essentially invariant with soil moisture and wavelength.
Since LAD depends on two parameters (u(f) and v(6)),
both parameters were included in the adjustable set. Thus,
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for inversion purposes, the set {LAIL p,7, u(0), (), ws}
remained adjustable and the set {h,b,c, b, ¢, u(é),v(9)}
was fixed. Note the adjustable set contains parameters of both
vegetation and soil. ’

III. MODEL INVERSIONS

A. Problem Configuration

The general inversion problem may be stated as follows:
given a set of empirical directional reflectance data, determine
the set of model parameters such that the computed directional
reflectances best fit the empirical data. The. fit of the empirical
data is determined by a merit function [9], €2, defined here as

n
=3 ()

i=1

3

where r; is the directional reflectance for a given scan and
solar angle geometry, 77 is the geometrically-analogous model
estimate, and 7 is the number of reflectance samples. Although
a variable weighting scheme may be introduced into (3), equal
weighting was assumed here. The inversion of a DISORD
prototype was systematically explored in [21].

Inversions were conducted individually for each of the seven
spectral bands and 23 data sets. Thus, seven samples were used
to determine six parameters. This configuration was used based
on the redundancy in sampling (each sample represents an
average of three measurements), the clarity of the atmosphere,
and the high information content in principal plane reflectance
[21]. -

Several measures were taken to help insure the global
minimizer was found. First, (3) was minimized using a simplex
routine (subroutine AMOEBA, [22]). This routine outper-
formed several other optimization routines in a separate study
[21]. Second, broad parameter limits, based on theory and
expected values, were imposed (e.g., 0 < LAI < 10).
Although the initial simplexes spanned the resulting parameter
space, they were not necessarily the optimal choices. Third, the
simplex routine was modified to permit variable expansion
coefficients such that all vertex movements fell within the
allowed parameter space. Fourth, minimization was terminated
only after the merit function values (see (3)) of all vertices
were to within 10~7. This value was found to be satisfactory
in [21]. Finally, the procedure was restarted once after the
initial convergence.

B. Spectral Band and Solar Angle Analysis of Results

Below, inversion results for each parameter are discussed
relative to the spectral band and SZA. To achieve greater
statistical significance, SZA’s were binned either above or
below 40° (approximately the center of the range). Cases
with. a retrieved LAI < 0.1 were eliminated since this
condition precludes a reasonable determination of any model
parameter. The number of cases averaged per band/solar
angle combination is given in Table TV. Note that reflectance
data were obtained from five different plots and surface
parameters were measured at additional plots. Because of

TABLE IV
MEaN ERrRORS (WITH MEAN RELATIVE ERRORS IN PARENTHESES) AND STANDARD
DEVIATIONS IN RETRIEVED LEAF REFLECTANCE AS A FUNCTION OF BAND AND
SZA. MEASURED VALUES (po) ARE ALSO SHOWN. THE NUMBERS OF SAMPLES
* USED TO GENERATE MEANS ARE SHOWN NEXT TO STANDARD DEVIATIONS

SZA <40° SZA > 40°

Band [ ME (MRE) [} no. ME (MRE) o 10.
1 0.101 0052 (51.5y 0.020 13 0.022 21.8) . 0.007 10
2 0174 0.100 (57.5)  0.049 10 .0.027 (15.5) 0.044 9
3 0.097 0.071 (73.2) 0.031 13 0.053 (54.6) = 0.042 9
4 0452 0.084 (18.6) 0.079 13 0.002 (0.4) 0033 10
5 0424 0.054 (12.7) 0061 13  -0.015(3.5) 0031 10
6 0320 0.138 (43.1) 0.125 10  -0.006 (-1.9)  0.066 10
7 0252 -0.115(-456) 0.043 13 -0.113 (-44.8) 0.019 10

surface heterogeneity, some variability is to be expected in
the results in Table IV [32].

Results are indicated as mean errors (ME) and mean relative
errors (MRE, in %), where

l n
ME = 5;(& ~ Fo), @
and
1 < (PZ — Po) ‘
MRE = =y 0.
RE =~ ; 100, 5)

where Fp is the measured parameter value, P; is the retrieved
parameter value for data set ¢, and where n is the number of
data sets.

Estimates of leaf reflectance were most accurate at high
SZA’s (Table IV). Standard deviations were generally lower
at high SZA as well. These results are consistent with [21]
and the sensitivity analysis which showed increasing model
sensitivity to leaf reflectance with increasing SZA (Table IIT).
Because a high SZA results in less photon interaction with
the soil, errors introduced by incorrectly retrieved/estimated
soil parameters are reduced. Leaf reflectance errors were
lowest (<0.006, 1.9%) in the NIR (bands 4 and 6). The
superiority of NIR bands may be due to the greater magnitude
of canopy reflectance relative to soil reflectance. This increases
the effective signal-to-noise ratio. ‘

Leaf transmittance, in contrast, was most accurately esti-
mated at high SZA’s for visible bands, but at low SZA’s
for NIR bands (Table V). These trends are predictable given
the spectra of soil and vegetation. When the background is
bright relative to the canopy (as in the visible), less photon
interaction with the background (larger canopy path length) is
preferable. The high sensitivity of canopy forward scattering
to leaf transmissivity leads to better results at high SZA. When
the canopy is much brighter than the background (NIR), results
are best if the background réceives greater irradiance (low
SZA). This probably occurs since changes in TOC reflectance
due to changes in the soil contribution—as determined by
leaf transmittance at low SZA—exceed those due to changes
in canopy forward scattering at high SZA. These: trends
also follow previous results [21]. Standard deviations were
generally lower for all bands at high SZA’s.

Although errors in the soil single scattering = albedo
(Table VI) were not well correlated with SZA, a comparison
of modeled soil reflectance using retrieved w; is-revealing
(Fig. 4). The modeled soil spectrum followed the measured
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TABLE V
MEAN ERRORS (WITH MEAN RELATIVE ERRORS IN PARENTHESES) AND
STANDARD DEVIATIONS IN RETRIEVED LEAF TRANSMITTANCE AS A FUNCTION OF
BAND AND SZA. MEASURED VALUES (7o) ARE ALSO SHOWN

SZA < 40° SZA > 40°
Band To ME (MRE) [ ME (MRE) [+]
1 0.041 -0.015 (-36.6) 0.037 0.009 (21.9) .0.012
2 0.144 -0.028 (-19.4) 0.061 -0.018 (12.5) 0.031
3 0.053 -0.013 (-24.5) 0.067 0.012 (22.6) 0.023
4 0.490 -0.026 (-5.3) 0.078 -0.047 (-9.6) 0.042
5 0.510 0.010(1.9) 0.057 . -0.015(-2.9) 0.056
6 0.436 0041 (9.4) 0.054 0.060 (13.7) 0.061
7 0.318 -0.021(-6.6) 0.130  -0.114 (35.8) 0.036
TABLE VI

MEAN ERRORS (WITH MEAN RELATIVE ERRORS IN PARENTHESES) AND
STANDARD DEVIATIONS IN RETRIEVED SOIL SINGLE SCATTERING ALBEDO AS A
FUNCTION OF BAND AND SZA. MEASURED VALUES (wso ) ARE ALSO SHOWN

SZA < 40° SZA > 40°
Band Wso ME (MRE) [ ME (MRE) ]
1 . -0. -47, . 0.111 (122.0) 0.053
2 0.205 -0.129 (-62.9) 0.050 0.084 (41.0) 0.104
3 0.259  -0.098 (-37.8) 0.017  -0.050(-19.3) 0.078
4 0.347  -0.084 (-24.2) 0.091 0.262 (75.5) 0.130
5 0.490  -0.124 (-25.3) 0.036 0.206 (42.0) 0.127
6 0.603 -0.170 (-28.2) 0039  -0.086 (-143) 0.124
7 0.652  -0.202 (-31.0) 0.138  -0.208 (-31.9)  0.045
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Fig. 4. Nadir reflectance from the soil model using mean ws retrieved from
canopy model inversions. Diamonds (o) represent soil refiectance as measured
by MMR at nadir, and asterisks (x) represent equivalent TOC reflectance.
Solid line shows soil model reflectance for w, retrieved at high SZA. Dashed
line shows the equivalent for ws retrieved at low SZA:

soil spectrum- for w, retrieved at low SZA’s, but followed
the measured vegetation spectrum for w, retrieved at high
SZA’s. Also, standard deviations in errors were lower at
low SZA. However, the inversion underestimated w, in all
bands for low SZA’s. The overestimation of leaf reflectance
(Table IV) probably led to this systematic. deviation. Recall
also the “measured” w, values were not directly measured,
but were estimated via inversions [19]. Moreover, there were
undoubtedly differences in soil moisture and canopy litter
between the bare soil and vegetated plots. Still, the relatively
low sensitivity of DISORD (Table III) to all soil parameters
underscores the difficulty in retrieving soil properties from
TOC reflectance data.

Results for LAI are shown in Fig. 5 and Table VIL Means
and standard deviations of the errors generally increase with
SZA. This is consistent with the sensitivity analysis which
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Fig. 5. Retrieved LAI as a function of spectral band (ordered sequentially
from left to right, top to bottom) and SZA. Horizontal dotted line indicates’
mean measured LAL Vertical line partitions SZA bins. The accuracy and
consistency of inversions with NIR bands (4 and 5) at low SZA is apparent.
For graphing purposes, values greater than 5.0 were set equal to 5.0.

"TABLE VI
MEAN ERRORS (WITH MEAN RELATIVE ERRORS IN PARENTHESES) AND
STANDARD DEVIATIONS IN RETRIEVED LAI As A FUNCTION OF BAND
AND SZA. THE MEASURED LAI VALUE Was 1.94 £ 0.61

SZA < 40° SZA > 40°
Band ___ME (MRE) o ME (MRE) o
T 0225 (11.6) 2382 1006 (319)  1.632
2 0641(-330) 0524  0.466(240) 1914
3 0.044 (2.3) 2804  -1.045(539)  0.658
4 0.157 (8.1) 0347  5.103(2630)  2.587
5 0068 (-3.5) 0331 2484 (1280)  3.547
6  -0590(-304)  2.110  1027(529) 4266
7 1845(95.1)  3.750  -0828 (:427)  0.395

shows the sensitivity of TOC reflectance to LAI decreases with
increasing SZA (path optical depth). However, it is contrary
to results found in [9], [12], and [21]. The best LAI estimates

“were provided by bands 4 and 5 (NIR) at low SZA’s, where

the mean errors were less than 0.16 (8.1%) and the standard
deviations were less than 0.35 (see Fig. 5, bands 4 and 5).
This error is well within the uncertainty of the measured
value. The spectral band preference also follows from the
sensitivity study, since the sensitivity to LAl at NIR exceeded
the sensitivity to LAI at red, relative to other parameters.
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Fig. 6. Comparison of the mean measured LAD (bars) with retrieved Beta
LAD (line). The rettieved distribution was determined by averaging results
from NIR bands and high solar zenith angles (Section II-B). Retrieved
distribution was determined at bin centers and normalized.

To determine the most accurate estimation of LAD, the x?
statistic was employed [22],

2

10
2 _ (ff_f;)
X —;———~fj+f; , ©

where f} is the retrieved fraction of leaf normals in zenith
angle bin j, and f; is the measured fraction. The retrieved
fractions were determined at the bin centers and normalized.
The retrieved distribution is closest to the measured distribu-
tion when x?2 is lowest. The mean estimates of x(8) and v(9),
their standard deviations and the associated x? values are given
in Table VIII. The closest approximations were achieved in
NIR bands 4 and 5 at high SZA’s (3% = 0.037 and 0.008,
respectively). This agrees with [12]. The average LAD from
these two bands (x? = 0.020) matches the true distribution
well (Fig. 6). The preference of NIR bands for the estimation
of the LAD is obvious from the sensitivity study results
(Table III). Relative to leaf optical properties, the sensitivity to
LAD parameters is greater at NIR wavelengths. The lack of a
strong dependence on SZA in the NIR inversion results is also
consistent with the sensitivity study. The greater dependence
on SZA in results for other bands is more consistent with the
sensitivity results for the red band. This may be due to the
increased reflectance anisotropy at high SZA.

C. Surface Albedo

Although the MMR bands are not contiguous over the
shortwave frequencies, surface albedo may be estimated using
the “extended band” method of Starks er al [23]. In this
method, the MMR bandwidths are artificially extended such
that all shortwave frequencies are represented (Table IX). The
fraction (V—Vz) of shortwave energy incident in each band is

used to weight the broad-band spectral albedo (ALB;). The

total albedo (ALB) is estimated by summing the spectral
products

4.0 7
ALB = / ALB W d) = ZALBZ-W}-, D
0]

.3 =1

TABLE VIII '
MEAN ERRORS AND STANDARD DEVIATIONS IN RETRIEVED LAD
PARAMETERS (1£(6), v(6)) AS A FUNCTION OF SPECTRAL BAND AND
SZA. ERRORS IN LAD ARE CHARACTERIZED BY x2: LOWER VALUES
INDICATE FiTS CLOSER TO THE MEASURED DISTRIBUTION. THE MEASURED
Varues Were {u(6),(9)} = {0.860 £ 0.063, 2.244 + 0.368}

SZA < 40°
u®) v(8)
Band ME G ME o %2
1 1.183 0.678 2.554 0.265 0.228
2 0.752 0.995 1.801 1.292 0.135
3 0.604 0.864 1.907 1.335 0.100
4 0.119 0.708 0.964 1.452 0.038
5 0.345 0.397 1.261 1.404  0.061
[} 0.623 1.621 2.451 0.572 0.102
7 2.366 2,125 2.293 0.707 0.562 -
() ’
SZA > 40°
ey v(0)
Band ME [+ ME g %2
1 0.373 0.395 2.115 0.450 0.076
2 -0.190 0.392 1.724 1.520 0.116
3 0.212 0.838 2.298 0.891 0.085
4 -0.014 0310 0924 1.323 0.037
5 -0.189 0.162  -0.100 0.939. 0.008
6 -0.180 0.214 1.426 1.583 .0.091
7 0.782 1.411 1.806 1.858 ~ 0.143
(b)
TABLE IX

EXTENDED BANDWIDTHS USED TO COMPUTE ALBEDO VALUES. MEAN WEIGHTS
(W:) AND STANDARD DEVIATIONS WERE DETERMINED FROM 5S RESULTS

Band Bandpass Limits Extended Limits A

[

1 0.450-0.520 0.300-0.520 0.239 0.005
2 0.520-0,600 0.520-0.615 0.146 0.002
3 0.630-0.690 0.615-0.725 0.144 0.001
4 0.760-0.900 0.725-1.000 0.222 0.002
5 1.150-1.300 1.000-1.360 0.139 . 0.002
6 1.550-1.750 1.360-1.800 0.067 0.001
7 2.080-2.350 1.800-4.000 0.043 0.001

where
f;\b’? Io})\dA

04.50 Ao d)‘.

i =

: ®

and where o » is the irradiance at A, and A, ; and Xy ; are
the lower and upper limits of extended band ¢, respectively.
Irradiance was determined with the 5S model. Average weights
(W;) and their standard deviations are given in Table IX. In
DISORD, spectral atbedo is determined through quadrature
integration of the reflectance distribution. A previous study
[21] suggested errors in spectral albedo may remain small
despite significant errors in retrieved parameters.

In the cases below, albedo estimates from (7) were com-
pared with mean measured values. The latter were determined
from two pairs of pyranometers at site 916. The mean absolute
error (MAE) and the mean of the relative absolute errors
(MRAE) were calculated using (4) and (5), where (P; — F)
was replaced with [ALB} — ALB;| and where ALB; is the

_mean measured albedo and ALB is the estimated albedo for

data set 1.

1) Case 1: Initially, ALB; was calculated separately with
the retrieved parameter set for each spectral band and solar
angle combination. Thus, spectral albedo was -determined
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Fig. 7. Comparison of measured and modeled albedo. The dashed line is
the 1-to-1 line. (a) Parameter sets were retrieved for each band and data set
individually. This follows the method of Starks et al. [23]. (b) Parameter
sets were determined from measured values (Table II). Only atmospheric
properties and solar zenith angles were changed between model calculations.
(c) Same as (b), but canopy parameters were determined from retrieved data
~ at optimal wavelengths and solar zenith angles.

from seven reflectance samples. Albedo estimates exceeded
the measured values in most cases (Fig. 7(a)). Differences
decreased with increasing albedo. The MAE was 0.025, the
MRAE was 14.9%, and the correlation coefficient (r) was
0.89. Errors were not well correlated with either solar angle
or 7.

Starks et al. [23] reported larger errors (MRAF = 22.4%
for 1987 and 27.6% for 1988) using an empirical model and a

more diverse set of FIFE MMR data. The lower MRAE value
in the present study may be due to the use of a physically-
realistic model. Model accuracy is especially significant in
directions for which data were not available during inversion.
A notable systematic error, which caused the offset of the
regression line in Fig. 7(a), was obvious in [23] as well.
Sources of errors are comprehensively discussed in [23].

2) Case 2: In most process models, a single set of BRDF
parameters must allow accurate calculations of albedo over
a range of illumination conditions. To test the potential of a
single parameter set, the measured parameter values (Table II)
were used ifi DISORD to determine ALB;. A comparison of
estimated and measured albedo is shown in Fig. 7(b). The
MAE was 0.022 (MRAE = 13.0%)—a small improvement
over Case 1. Again, errors decreased as albedo increased.
Compared to Case 1, the regression coefficient improved
notably (r = 0.95). This suggests that random errors in Case
1 evolved from differences in inversion solutions.

-3) Case 3: Based on the above results, a single set of
retrieved parameters was used to estimate albedo. “Optimal”
parameter values were determined based. on spectral band
and solar angle analysis (Section III-B). Specifically, leaf
reflectance was obtained from results at high SZA (Table IV).
Leaf transmittance in visible channels was obtained from
results for high SZA’s, while NIR transmittance was obtained
from results for low SZA’s (Table V). Soil ws was determined

" from results at low SZA’s (Table VI). The LAI (1.985) was
-obtained by averaging results from bands 4 and 5 at low

SZA’s (Table VII). Finally, the LAD parameters (u(6) =
0.7582, () = 2.656) were found by averaging results from
bands 4 and 5 at high SZA’s (Table VIII). Albedo estimates
are shown in Fig. 7(c). Compared to Case 2, the MAE (0.007;
MRAE = 3.63%) was more than 10 times lower. This
indicates a significant reduction in the systematic bias. The
correlation (r = 0.94) was similar.

Based on these results, two additional observations deserve
comment. First, albedo results determined with variable pa-
rameter sets (Case 1) were less accurate than those found
with a single parameter set (Cases 2 and 3). This suggests
that solutions determined from limited data sets (e.g., seven
principal plane samples at one SZA) may provide poor re-
flectance estimates in directions where data were absent during
inversion. This leads to erroneous albedo estimates. Using
preferred wavelengths and solar angles for parameter retrieval
(Section III-B) seems to prevent this problem. Second, albedo
results with retrieved canopy parameters were superior to those
with measured parameters. This underscores the potential for
determining “energy” variables (e.g., albedo) from energy data
(e.g., angular reflectance). Essentially, inverse methods may
compensate for errors in the BRDF model and parameter
measurements. Errors in either can lead to poor results despite

" accuracy in the other.

D. Fraction of Absorbed Photosynthetically
Active Radiation (fAPAR)

Studies suggest that fAPAR has a near-linear relationship
with some vegetation indices [24]. However, effects of viewing
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TABLE X )

EXTENDED BANDWIDTHS USED TO COMPUTE fAPAR AND fAPAR¢ 01,1 MEAN
WeiGHTS (W;) WERE COMPUTED BY THE 5S MODEL. ALSO SHOWN ARE THE
NORMALIZED WEIGHTS AFTER CONVERSION FROM ENERGY UNITS TO
QUANTUM UNITS. STANDARD DEVIATIONS WERE NEGLIGIBLE IN EACH CASE

Bandpass 7 —.

Band Limits . FExtended Limits 1 (oo8y] Wi [photons]
T 04500520 0.400-0.520 0.410 0345
2 05200600  0.520-0.615 0.330 0342
3 06300690  0.615-0.700 0.261 0313

geometry [18], canopy structure [25] and soil/background [25],
[26] have hampered efforts to find a general VI-fAPAR rela-
tionship for the FIFE area. A recent study [21] suggested that
absorbed radiation could be accurately estimated via BRDF
model inversions. Below, this method is used to estimate
fAPAR.

Algebraically, fAPAR is defined as

IO —‘ Rc — (Tc - Rs)
Iy ’

where I is the incident photon flux density (PFD), R, is
the exitant PFD above the canopy, 7, is the PFD trans-
mitted through the canopy, and R, is the PFD reflected
by the soil/background. PFD is defined as the number of
photons (0.4-0.7 pm) incident per unit time on a unit surface
(mol-m~—2.s71). Photon counts rather than energy units are
used since photosynthetic rates are essentially independent
of the energies of the absorbed photons [27]. Equation (9)
can be approximated by letting R; = T Ry 1 118]. This
effectively assumes the soil and TOC albedos are equal. With
this substitution, fAPAR can be estimated with three sensors,
as used in FIFE, instead of four.

For modeling purposes, fAPAR is defined similarly to
albedo (see (7)),

fAPAR = &)

0.7 3
FupyWadA =Y FoiW;,
4

7=1

fAPAR = 10)
where [y » is the fraction of radiant energy absorbed by the
canopy at wavelength A, and F‘w- is the mean fraction of
radiant energy absorbed by the canopy in band :. All other
variables are as defined above, except the integral limits in
(8) are now 0.4 and 0.7 ym. DISORD directly evaluates Fy ;
using quadrature integration and (9). Extended band limits
and weights (determined from 5S) are shown in Table X. The
standard deviations of the band weights were negligible.

Since 5S determines irradiance in W m~™2, a correction
based on Planck’s Law (K, o A) was used to convert
W to mols™!. The neglect of this correction biases the
weights toward shorter wavelength (higher energy) bands (see
Table X). To facilitate the use of standard 5S output, W; in
photon counts was approximated as

Ao

oot ToadA Mg
i= | T —— an
Zj:lIO
- Ab,g -
IO:/ ToadA Ag, 12)
X

a,j

where J; is the center wavelength of extended band i.

1) Canopy fAPAR: The fAPAR data were measured with a
line quantum sensor during eight periods over the two days.
The SZA range was 22 to 56°. Typically, five measurements
were made within each period. Equation (10) was used to
estimate fAPAR with both measured and retrieved model
parameters. Atmospheric data collected near the time of the
fAPAR measurements were used to estimate W;. The MAE
and MRAE were calculated using (4) and (5), where (F; — Fp)
was replaced with [fAPAR] — fAPAR;|, and where fAPAR,; is
the mean measured value and fAPAR] is the estimated value
for data set 4, and n = 8.

Modeled fAPAR values, determined with. measured pa-
rameters (Table II), are plotted against mean fAPAR data
in Fig. 8(2). Results show the modeled fAPAR consistently
exceeded the measured values. The MAE was 0.174 (37.14%
relative). The correlation coefficient was 0.906, which sug-
gests the largest errors were systematic. The predominance of
systematic errors and decreasing errors with increasing fAPAR
(and SZA) are the same trends observed for the Case 2 albedo
(measured parameters).

Second, the optimal canopy parameters—described in the
Case 3 albedo study—were used (Fig. 8(b)). Since MMR
data were not collected simultaneously with fAPAR, only
data acquired closest in time to fAPAR acquisition periods
were used. Again, the modeled values exceeded the measured
values. However, the MAE was reduced by nearly. 20%
to 0.142 (MRAE = 30.17%). The correlation coefficient
(0.899) was similar to the case above. As in the albedo
study, the model was more accurate when optimal retrieved
parameters were used. In addition, errors decreased with
increasing fAPAR (SZA). The lack of simultaneity in the
MMR and fAPAR data acquisitions undoubtedly contributed
to some of the differences.

2) Total fAPAR: To help isolate the sources of the fAPAR
errors, total (canopy and soil) fAPAR values were also com-
puted. Empirical fAPARta1 values were determined by

fAPAR¢otal = Io — Re. 3)

In DISORD,

TAPARota1 = TAPAR 4 fASOIL = 1.0 — ALBpar, (14)
where fASOIL is the fraction of PAR radiation absorbed by
the soil. Thus, fAPAR; 1, was determined by replacing F, ; in
(15) with ALB;, and subtracting the result from 1.0 (see (14)).
Again, both the measured and the optimal retrieved parameters
were used (Fig. 9(a) and (b), respectively). MAE and MRAE
were determined as in the fAPAR calculation, except fAPAR
was replaced with FAPARqa)- :

Errors in fAPAR; a1 Were minimal. Estimates were within
0.04 (measured parameters) and 0.09 (retrieved parameters)
of the measured values. The measured parameter set resulted
in an MAE of 0.002 (MRAE = 0.185%), while the optimal
retrieved parameters produced an MAE of 0.005 (MRAE =
0.503%). The correlation coefficients were 0.942 and 0.946, re-
spectively. Unlike for albedo and fAPAR, errors in fAPARqs)
were larger when the retrieved parameters were used. Note that
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Fig. 8. Comparison of measured and modeled fAPAR. Error bars represent
the minimum and maximum values per measurement period. Note that fAPAR
-was not measured simultaneously with MMR reflectance. The dashed line is
the 1-to-1 line. (a) Canopy parameters were determined from measured values
(Table II). Only atmospheric properties and solar zenith angles were changed
between model calculations. (b) Same as (a), but canopy parameters were
determined from retrieved data at optimal wavelengths and solar zenith angles.

although fAPAR varied significantly over the eight periods,
fAPAR:.:,; Was relatively invariant (cf, Figs. 8(a) and (b) and
9(a) and (b)).

3) Error Analysis: As errors in fAPAR significantly ex-
ceeded those in fAPAR;q,), some analysis of fAPAR error
sources is warranted. First, errors in the band extension method
were estimated using directional reflectance data gathered with
‘a Spectron Engineering SE590 Spectroradiometer. Reflectance
data were provided at every 5 nm of the PAR spectrum for
canopy, litter, and soil. The canopy and soil data were obtained
at site 916 during IFC-5, however the litter data were obtained
at various sites on September 15, 1993 [31]. Only litter data
obtained over previously burned sites were used. Data at the

maximum view zenith angle (50° backscatter) were used to

reduce contributions from underlying media.

Mean relative errors (MRE) were determined using (5),
where P; was replaced with the mean SES90 reflectance over
the MMR bandwidth, and F,.was replaced with the mean
SE590 reflectance over the extended bandwidth (Table X)
for each data set. MRE values for each band and the PAR
spectrum (using quanta weights from Table X) are shown
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Fig. 9. Comparison of measured and modeled fAPAR;,t.1. Note that
fAPAR;,1a1 Was not measured simultaneously with MMR reflectance. The
dashed line is the 1-to-1 line. (a) Canopy parameters were determined from
measured values - (Table IT). Only atmospheric properties and solar zenith
angles were changed between model calculations. (b) Same as (a), but canopy
parameters were determined from retrieved data at optimal wavelengths and
solar zenith angles.

in Table XI. Errors were gteatest in band 1, however .the
weighted PAR errors were below 3.3% for each component.
The PAR reflectance error for the total soil, litter, and canopy
system was 2.53% (¢ = 0.36%) as determined from nadir
reflectance data. Note that MMR spectral sensitivity and
bidirectional effects were largely ignored. For estimation of
errors in absorbed radiation, optically semiinfinite media must
be assumed (i.e., albedo must be considered the compliment of
the absorbed fraction). The relatively small errors in Table XI
were expected since the actual MMR bands cover about 70%
of the PAR spectrum. This is considerably more than the
26% coverage of the shortwave spectrum (0.3-4.0 pm), for
which the band extension method provided reasonable albedo
estimates (Section III-C).

Second, if fAPAR ‘is significantly overestimated and
fAPAR,;,; is reasonable, (14) requires that fASOIL be
significantly underestimated—i.e., the modeled soil must
be considerably brighter than the true soil. SESO0 data
suggests the litter was darker than the soil. Since litter was
present below the canopy, estimates of ws based on bare
soil reflectance would lead to an overestimation of actual
background reflectance. However, estimates of w, determined
through DISORD inversions with TOC data should have been
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TABLE XI
MEAN RELATIVE ERRORS IN EXTENDED BAND REFLECTANCE DUE TO THE
ASSUMPTION OF CONSTANT REFLECTANCE OUTSIDE MMR BaNDWIDTHS. TO
REDUCE EFFECTS FROM OTHER COMPONENTS, THE MAXIMUM VZA
(50° ™ BACKSCATTER) WAS USED. RESULTS WERE AVERAGED OVER
MULTIPLE SZA’S. REFLECTANCE ERRORS OVER THE FULL PAR SPECTRUM
‘WERE DETERMINED USING THE QUANTUM BAND WEIGHTS IN TABLE X

MRE (%)
Component Band T ~Band 2 Band 3 Weighted PAR
Canopy 152 231 770.7 2.75
Litter (Thatch) 12.4 -1.72 -1.41 3.27
Soil 9.3 -2.03 2.55

0.12

reasonable. Thus, errors in Figs. 8(b) and 9(b) should have
been lower than those in Figs. 8(a) and 9(a). This did occur
to some degree. Soil moisture differences may have had a
similar effect. Finally, a previous study [19] suggests the soil
model probably overestimated reflectance off the principal
plane. Note the decrease in fAPAR errors with increasing
SZA (increasing fAPAR) is as would be expected for a soil
error source.

The last source of differences between modeled and mea-
sured fAPAR is the “measured” fAPAR. Three points are
noteworthy. First, canopy heterogeneity at site 916 may have
resulted in differences between MMR and fAPAR measure-
ment plots [32]. Second, high variance in the fAPAR data
(see error bars in Fig. 8(a) and (b)) was primarily due to
large variability in transmitted flux measurements. Sources of
this variability include instrument problems, canopy gaps and
heterogeneity. Third, the approximation of (9) assumed that
the TOC albedo equaled the soil albedo. If the true soil albedo
exceeded the TOC albedo, this approximation would lead to
underestimation of the actual fAPAR. Although soil albedo
was not measured, soil reflectance exceeded TOC reflectance
‘in some bands and directions.

E. Other Sources of Errors

Although error sources have been identified in the sections
above, several general error sources for inversion studies
deserve review. First, there presently is not a method to insure
global minimization in multiple variable problems, although
several steps were taken in this study to insure optimality.
Second, the MMR data were measured with a 15° IFOV
instrument, yet the model assumes a unit steradian IFOV.
This effect is more important in visible wavelengths where
the angular reflectance varies more in proportion to the mean.
Third, the MMR view angles were accurate to £2° zenith and
+10° azimuth. This probably had minimal effect since samples
near the hot spot (where reflectance changes are greatest) were
filtered out. Fourth, isotropic diffuse irradiance was assumed
throughout this study. Although this assumption is incorrect,
its impact is not known and will be considered in future
work. Finally, turbid medium models are not ideally suited
to low LAI conditions. Still, for grassland applications, turbid
medium models are probably the most reasonable.

IV. CONCLUSION

A turbid medium reflectance model [13] can adequately sim-
ulate the top-of-canopy (TOC) reflectance of grasslands. The

TOC reflectance is most sensitive to leaf optical properties.
Sensitivity to leaf optical properties increases substantially
as the solar zenith angle (SZA) increases. The third most
influential parameter is LAI, the sensitivity to which decreases
as SZA increases. LAI is nearly as influential as leaf optical
properties in the NIR band, however it is substantially less
influential in the red band. A leaf angle distribution (LAD)
parameter and soil single scattering albedo (ws) are fourth
and fifth most influential, not necessarily respectively. The
TOC sensitivity to other parameters varies for different spectral
bands. :

The optimal spectral bands and solar angles for gathering
data to estimate parameters were determined via model inver-
sion. LAI is most accurately retrieved from NIR data gathered
at low SZA. The mean LAI error (~0.1) is well within the
accuracy suggested for agronomical and climatological needs
[28]. The LAD is best retrieved from NIR data acquired at
high SZA, although the dependence on SZA is not large. Leaf
reflectance is most accurately retrieved from data gathered at
high SZA, while leaf transmittance trends vary with spectral
band. Mean errors in leaf optical properties below 0.03 are
generally possible for preferred SZA conditions: Soil single
scattering albedo is most reliably retrieved from data collected
at low SZA. These results imply that LAI and ws may be
difficuit to retrieve for high latitude locations since low SZA
conditions may not be possible.

Albedo was also estimated using both measured and re-
trieved model parameters. Results are most accurate when the
“optimal” retrieved parameters, determined from data acquired .
at preferred wavelengths and SZA noted above, are used.
Estimates accurate to +0.01 (4% relative) are possible over
a range of illumination angles. Supetior results with retrieved
parameter values, compared to measured values, suggest that
estimating albedo from related radiation data (i.e., directional
reflectance) is less subject to model and measurement errors.
Errors appear to be larger when retrieved parameters are
not obtained from data collected under preferred conditions.
In these cases, more angularly diverse data may be needed
to accurately estimate spectral albedo in some bands- and
SZA.

Estimates of fAPAR (canopy absorption) and fAPAR;sta:
(soil and canopy) were also determined. The model appears
to overestimate fAPAR when either measured or retrieved
parameters are used (37.14% and 30.17%, respectively). Errors
decrease as SZA increases, however. Estimates of fAPAR;ota1
are accurate for all SZA. Although not quantified, the largest
errors in fAPAR were probably due to differences in the
conditions between the MMR and fAPAR measurement sites.
This is particularly important for the soil model, since its
parameters were determined from the reflectance of bare
soil. Canopy litter was undoubtedly present below the actual
canopy. Moreover, estimates of soil reflectance were probably
erroneous for directions off the principal plane [19]. Finally,
although the model accurately predicted TOC reflectance,
it does not simulate canopy gaps. This may have led to
its overestimation of fAPAR. It is anticipated that fAPAR
estimation via inverse methods will improve with additional
studies. ‘
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Although principal plane samples are most useful for inver-
sion applications [21], the ability to scan nine samples in/near
the principal azimuthal plane will routinely be possible upon
launch of the EOS MISR instrument [29]. Other sensors, such
as AVHRR and the EOS MODIS [30], also provide angularly
diverse data. This study suggests that accurate determination of
surface parameters, including albedo and fAPAR, from these
sensors is (will be) possible.

ACKNOWLEDGMENT
The SE590, MMR, and fAPAR data were collected and

kindly provided by E. Walter-Shea, M. Mesarch, and their -

. team from the University of Nebraska. Their assistance is
appreciated. The radiosonde data were measured by a team
from Cornell University led by W. Brutsaert, and the ozone
and aerosol optical depth data were collected by a team led by
R. Fraser. B. Markham provided MMR band sensitivity data.
Species abundance data were collected by S. M. Glenn and
D. J. Gibson. LAD data were collected by Y. Li, and LAI
data were collected by the staff of the University of Nebraska,
Lincoln. J. McManus at FIS assisted with numerous data set
issues. K. Oleson assisted with albedo and fAPAR figures.
These contributions are gratefully acknowledged. Part of this
work was completed at Université Blaise Pascal in France.

REFERENCES

[1] 1. Shukla and Y. Mintz, “Influence of land-surface evapotranspiration
on the earth’s climate,” Science, vol. 215, pp. 1498-1500, 1982.

[2] A. Henderson-Sellers and M. F. Wilson, “Surface albedo data for
climatic modeling,” Rev. Geophys. Space Phys., vol. 21, pp. 1743-1778,
1983.

[3] I. L. Monteith, “Solar radiation and productivity in tropical ecosystems,”
J. Appl. Ecol., vol. 9, pp. 747-766, 1972.

[4] F. Baret and G. Guyot, “Potentials and limits of vegetation indices for
LAI and APAR assessment,” Remote Sensing Environ., vol. 35, pp.
161-173, 1991.

[5] S. N. Goward and K. F. Huemmrich, “Vegetation canopy PAR absorp-
tance and the normalized difference vegetation index: An assessment
using the SAIL model,” Remote Sensing Environ., vol. 39, pp. 119-140,
1992.

[6] B. Pinty, C. Leprieur, and M. M. Verstraete, “Toward a quantitative in-

terpretation of vegetation indices. Part 1: biophysical canopy properties

and classical indices,” Remote Sensing Rev., vol. 7, pp. 127-150, 1993.

[71 B. Pinty and M. M. Verstraete, “GEMI: a nonlinear index to monitor
global vegetation from satellites,” Vegetatio, vol. 101, pp. 15-20, 1992.

8] R. B. Myneni, F. G. Hall, P. J. Sellers, and A. L. Marshak, “Inter-
pretation of spectral vegetation indexes,” IEEE Trans. Geosci. Remote
Sensing vol. 33, pp. 481-486, 1995.

[9]1 N.S. Goel and D. E. Strebel, “Inversion of vegetation canopy reflectance
models for estimating agronomic variables I: problem definition and
initial results using the Suits’ model,” Remote Sensing Environ. vol. 13,
pp. 487-507, 1983. .

[10] R. B. Myneni, G. Asrar, and F. G. Hall, “A three dimensional radiative
transfer model for optical remote sensing of vegetated land surfaces,”
Remote Sensing Environ., vol. 41, pp. 85-103, 1992.

[11] P.J. Sellers, Y. Mintz, Y. C. Sud, and A. Dalcher, “A simple biosphere

' model (SiB) for use within general circulation models,” J. Atmos. Sci.

vol. 43, pp. 505-531, 1986.

N. S. Goel and R. L. Thompson, “Optimal solar/viewing geometry for

an accurate estimation of leaf area index and leaf angle distribution

from bidirectional canopy reflectance data,” Int. J. Remote Sensing, vol.

6, pp. 1493-1520, 1985.

[13] R.B. Myneni, V. P. Gutschick, G. Asrar, and E. T. Kanemasu, “Photon
transport in vegetation canopies with anisotropic scattering. Parts I
through IV,” Agric. For. Meteorol., vol. 42, pp.- 1-40 and 87-120, 1988.

[14] R. D. Stewart, “Modeling radiant energy transfer in vegetation
canopies,” Master’s thesis, Kansas State Univ., Manhattan, 1990.

[12]

[15] N.S. Goel and D. E. Strebel, “Simple beta distribution representation of
leaf orientation in vegetation canopies,” Agron. J., vol. 76, pp. 800-803,
1984.

S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and

bidirectional soil reflectance,” Remote Sensing Environ., vol. 41, pp.

123-132, 1992.

[17] P. I. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy,
“The first ISLSCP field experiment (FIFE),” Bull. Amer. Met. Soc., vol.
69, pp. 22-27, 1988. .

E. A. Walter-Shea, B. L. Blad, C. J. Hays, M. A. Mesarch, D.
W. Deering, and E. M. Middleton, “Biophysical properties affecting
vegetative canopy reflectance and absorbed photosynthetically active

radiation at the FIFE site,” J. Geophys. Res., vol. 97, pp. 18925-18 934,

©1992. i

[19] J. L. Privette, R. B. Myneni, W. J. Emery, and B. Pinty, “Inversion of a
soil reflectance model for use in vegetation BRDF models,” J. Geophys.
Res., vol. 100, no. D12, pp. 25497-25 508, 1995. )

[20} D. Tanré, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette, J. Perbos,

and P. Y. Deschamps, “Description of a computer code to simulate

the satellite signal in the solar spectrum: The 5S code,” Int. J. Remote

Sensing, vol. 11, pp. 659-668, 1990."

J. L. Privette, R. B. Myneni, C. J. Tucker, and W. J. Emery, “Invertibility .

of a 1-D discrete ordinates canopy reflectance model,” Remote Sensing

Environ., vol. 48, pp. 89-105, 1994.

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes. New York: Cambridge Univ. Press, 1986.

P. J. Starks, J. M. Norman, B. L. Blad, E. A. Walter-Shea, and C. L.

Walthall, “Estimation of shortwave hemispherical reflectanice (albedo)

from bidirectionally reflected radiance data,” Remote Sensing Environ.,

vol. 38, pp. 123-134, 1991.

G. Asrar, R. B. Myneni, Y. Lj, and E. T. Kanemasu, “Measuring and

modeling spectral characteristics of a tallgrass prairie,” Remote Sensing

Environ., vol. 27, pp. 143-155, 1989.

[25] T. H. Demetriades-Shah, E. T.  Kanemasu, 1. D. Flitcroft, and H.
Su, “Comparison of ground- and satellite-based measurements of the
fraction of photosynthetically active radiation intercepted by tallgrass
prairie,” J. Geophys. Res., vol. 97, pp. 18947-18 950, 1992.

[26] E. G. Hall, K. F. Huemmrich, S. I. Goetz, P. J. Sellers, and J. E.

Nickeson, “Satellite remote sensing of surface energy balance: success,
failures, and unresolved issues in FIFE,” J. Geophys. Res., vol. 97, pp.
19061-19090, 1992. .

R. W. Pearcy, “Radiation and light measurements,” in Plant Physi-

ological Ecology, Field Methods and Instrumentation, R. W. Pearcy,

J. Ehleringer, H. -A. Mooney, and P. W. Rundel, Eds. New York:

Chapman and Hall, 1989, pp. 97-116.

[16]

(18]

f21]

[23]

[24]

[27]

28] 1. G. P. W. Clevers and W. Verhoef, “LAI estimation by means of

the WDVI: A sensitivity analysis with a combined PROSPECT-SAIL
model,” Remote Sensing Rev., vol. 7, pp. 43-64, 1993.

[29] D.J. Diner, C. J. Bruegge, J. V. Martonchik, T. P. Ackerman, R. Davies,

S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels,

E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. Lilienthal, D. L.
Nakamoto, R. J. Pagano, and T. H. Reilly, “A multi-angle imaging
spectroradiometer for geophysical and  climatological research from
EOS,” IEEE Trans. Geosci. Remote Sensing, vol. 27, pp. 200-214, 1989.

[30] V. V. Salomonson and D. L. Toll, “The moderate resolution imaging
spectrometer-nadir (MODIS-N) facility instrument,” Adv. Space Res.
vol. 11, pp. 231-236, 1991.

[31] E. Walter-Shea, personal communication, 1994,

[32] D. Schimel, personal communication, 1994.

J. L. Privette carned the Ph.D. degree in aerospace
engineering sciences from the University of Col-
orado, Boulder, in 1994.

He has been involved in remote sensing since
1989, primarily in the development and inversion
of bidirectional reflectance models. He has been
a Visiting Scientist at the National Center for At-
mospheric Research and Université Blaise Pascal,
France. He recently began work at NASA-Goddard
Space Flight Center as an employee of the Univer-
sity of Maryland. His interests include the develop-
ment of remote sensing products and their assimilation into ecosystem and
climate models.



284 ' IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34, NO. 1, JANUARY 1996

Ranga B. Myneni received the Ph.D. degree in biology from the University
of Antwerp, Antwerp, Belgium, in 1985. }
He was previously employed by Kansas State University, Mahattan, and
Georg-August University in Goettingen, Germany, prior to joining Goddard
Space Flight Center as an employee of the University of Maryland, College
Park. His research interests are radiation transport and remote sensing of

vegetation.

W. J. Emery (M’90) received the Ph.D. degree
in physical oceanography from the University of
Hawaii in 1975.

After working at Texas A&M University, Col-
lege Station, he moved to the University of British
Columbia, Canada, in 1978, where he created a
Satellite Oceanography facility and program. He
was appointed Pull Professor in Aerospace Engi-
neering Sciences at the University of Colorado,
Boulder, in 1987 where he is the Director of the
Center for Remote Sensing and Image Processing
(CRSP) He is active in the analysis of satellite data for oceanography,
meteorology, and terrestrial vegetation. In addition, his group writes analysis
software and establishes/operates data systems for the distribution of satellite
data received by their own antennas. He is a coauthor of two textbooks on
physical oceanography, has translated two oceanographic books (German to
English) and has authored over ninety refereed publications.

Dr. Emery is a member of the Laboratory for Atmospheric and Space
Physics (LASP), the Program in Oceanic and Atmospheric Sciences (PAOS)
and is on the CU Global Change Advisory Committee. He is a member of
a number of NRC, NASA, and NOAA comunittees and panels including the
EOSDIS Science Advisory Panel (known as the Data Panel). He is also co-
chairman of the JPL and GSFC DAAC’s User Working Groups. He is a
member of the NASA Science User Network (NSUN) Comumittee.

Forrest G. Hall received the undergraduate degree
in mechanical engineering from: the University' of
Texas and the M.S. and Ph.D. degrees in physics
from the University of Houston, Houston, TX.

He is with the NASA Goddard Space Flight
Center’s Laboratory for Terrestrial Physics where
he currently serves as Research Scientist and
Co-Project Manager for the Boreal Ecosystem-
Atmosphere Study (BOREAS).



